

REDUCE EMISSIONS WITH DISSOLVABLE PLUG TECHNOLOGY: Dissolvable Versus Conventional Plug

ERM The business of sustainability

SIGNIFICANT AND SCALABLE EMISSION REDUCTIONS O_{Nine}

STINGER[™] Dissolvable Frac Plug

DISSOLVABLE FRAC PLUGS ON A 6-WELL PAD TAKE 84 CARS OFF THE ROAD: $\sim 404\ METRIC\ TONS\ OF\ CO_2 E$

source: ERM

NEUTRAL OR REDUCE

The RR Reduced Emission of the Signal Signal

INCREASED

INCREASED

SAFETY with fewer humans at surface

TAKEAWAYS

Nine conducted an analytical study with ERM to quantify cradle-to-grave emission reduction of a dissolvable versus a composite plug completion.

Dissolvable plugs reduce carbon emission intensity in a scalable way that can be applied on a per-well basis.

There is a significant and immediate reduction in greenhouse gas emissions when using a dissolvable plug versus a composite plug.

√91%

By eliminating coil intervention entirely, dissolvables reduce carbon footprint by 91% or ~67.3 metric tons of CO_2e

↓18%

Assuming a 3-day coil tubing cleanout run, dissolvables reduce carbon footprint by 18% or ~13.3 metric tons of CO2e

METHODOLOGY

Carbon footprint is "the sum of greenhouse gas emissions and removals in a product system, expressed in CO_2e and based on life cycle assessment, considering a single impact category - Climate Change" (ISO 14067: 2013).

ISO 14067: Quantifying and reporting the carbon footprint of products

Established in 2013, the standard sets out four phases for the development of a carbon footprint study (in accordance with life cycle assessment studies):

SCOPE AND BOUNDARIES

Functional Unit

One typical deployment and extraction/clean-out process of 70 plugs

Approach

Cradle-to-grave

Geographic Coverage

United States, Permian Basin

Scenario 1: Coil clean-out run (assumes 3 days of clean-out and 4 days for conventional drill-out) Scenario 2: Elimination of coil usage (assumes 4 days for conventional drill-out)

COMPARATIVE EMISSIONS REDUCTION:

RESULTS (ELIMINATION OF COILED TUBING) O_{Nine}

DISSOLVABLE WITH NO CLEAN-OUT VS. CONVENTIONAL DRILL-OUT PER WELLBORE

The life-cycle carbon footprint of the dissolvable plug would be **91% smaller per wellbore** than the conventional composite plug.

CARBON FOOTPRINT OF 70-PLUG DEPLOYMENT IN METRIC TON CO₂ EQUIVALENTS

RESULTS (ELIMINATION OF COILED TUBING) O_{Nine}

DISSOLVABLE WITH NO CLEAN-OUT VS. CONVENTIONAL DRILL-OUT PER WELLBORE

This equates to ~67.3 metric tons of CO_2e or 14 passenger cars driving per year.

RESULTS (ELIMINATION OF COILED TUBING) O_{Nine}

CARBON FOOTPRINT OF 70-PLUG DEPLOYMENT IN METRIC TON CO₂ EQUIVALENTS PER WELLBORE

Assumes 4 days for conventional drill-out

RESULTS (DISSOLVABLE WITH CLEAN-OUT)

DISSOLVABLE CLEAN-OUT VS. CONVENTIONAL DRILL-OUT PER WELLBORE

The life-cycle carbon footprint of the dissolvable plug is **18% smaller per wellbore** than the conventional composite plug.

CARBON FOOTPRINT OF 70-PLUG DEPLOYMENT IN METRIC TON CO₂ EQUIVALENTS

RESULTS (DISSOLVABLE WITH CLEAN-OUT)

DISSOLVABLE CLEAN-OUT VS. CONVENTIONAL DRILL-OUT PER WELLBORE

This equates to ~13.3 metric tons of CO_2e or 3 passenger cars driving per year.

RESULTS (DISSOLVABLE WITH CLEAN-OUT)

CARBON FOOTPRINT OF 70-PLUG DEPLOYMENT IN METRIC TON CO₂ EQUIVALENTS PER WELLBORE

Assumes 3 days of clean-out and 4 days for conventional drill-out

line